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Abstract 

Various methods of introducing additional parameter to a family of multivariate exponential and Weibull distributions are 

presented. One of them is used to give a new two-parameter extension of the multivariate exponential distribution which may 

appear to be easier to deal with than those such commonly used two-parameter family of multivariate life distributions as the 

Weibull, gamma and log-normal distributions. Another general method that allows additional new three-parameter to a family of 

multivariate Weibull distribution is also introduced and studied. All the families of distributions expanded by either or both of 

these methods have the property that the minimum of a geometric number of independent random variables with common 

distribution in the family has a distribution also in the family. 
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1. Introduction 

Exponential and Weibull distributions play important roles in the analysis of survival or life time data as discussed by Ali, Mikhail 

and Haq [1]. These two distributions play such roles simply because of their constant hazard rates, convenient statistical theory, as 

well as their important property of lacking of memory. Cox and Oakas [5] stated that whenever the one-parameter family of 

univariate or bivariate exponential distribution is found to be insufficient, a number of wider families such as Gamma, Weibull and 

Gompartz-Makeham distributions are mostly used instead. Also, Cox and Oakas [5] discussed the usefulness and importance of 

these distributions in detail. Johnson et al. [10] explained these families of distributions in broader way. Genest and his fellow 

researchers [8] presented the usefulness and important properties of these distributions in details. 

There are many methods that can be used to introduce new parameters in order to expand and simplify families of distributions for 

either adding flexibility or to construct either covariate or correlation models. This is as stated clearly in Marshall and Oikin [14]. 

Whenever a scale parameter is added to a family of distributions, it accelerates life model and by taking powers of the bivariate 

survival function introduces a parameter that give rises to the proportional hazard rate model. According to Weibull [17] and Feller 
[7], the family of Weibull distributions contains the exponential distributions and it is constructed by taking the powers of 

exponentially distributed random variables. Similarly, the family of gamma distributions contains the exponential distributions but 

it is constructed by taking powers of the Laplace transform of the exponentially distributed random vectors. Arnoid [2] as well as 

Marshall and Oikin [14] presented and studied the method of adding parameter to a family of univariate exponential distributions in 

order to expand and become more flexible whenever new parameter is introduced into it. Marshall and Oikin [13] also studied the 

properties of the new families of these families of these distributions formed by addition of the new parameter 

In this research paper, an attempt has been made to prevent and discuss a general method of adding new parameter in the families 

of multivariate exponential and Weibull distributions, in particular, starting with a multivariate survival function 

, the one-parameter family of multivariate survival function:  
 

   (1.1) 

 

with  . As in univariate and bivariate distributions cases, it also worth noting that  whenever . 

The particular case that  is an exponential distribution gives a new two-parameter family distributions that may 

sometimes be used in place of usual multivariate Weibull and gamma families of distributions. It should be noted that all the 

methods used in introducing an additional parameter have a stability property. That is, if the method is applied twice, nothing new 

is obtained the second time. Therefore, a power of an exponential random vectors have a multivariate Weibull distribution, but the 

power of a Weibull random vectors is nothing but another Weibull random vectors. Similarly, it is equation (1.1) above, a 

multivariate survival form of the form  is introduced for , then the equation (1.1) gives nothing new. 
 

Multivariate Density and Hazard Rate of the new family of distributions 

As far as the multivariate function  has a multivariate density function, then the multivariate survival function  stated in equation 

(1.1) has easily computed the multivariate densities. In particular, whenever  has a multivariate density  and 
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rate of hazard , then the multivariate density function  has the multivariate density function  which is given 

by: 
 

  (2.1) 

 

and the corresponding hazard rate is given by: 
 

 
 

   (2.2) 

 

Hence,  
 

 
 

Similarly, as in bivariate case, it is also true that 
 

 
 

From the result obtained in equation (2.2) and what was stated by Genest, Ghoudi and Rivest [8], we can establish the following: 
 

    (2.3) 
 

    (2.4) 
 

Similarly, 
 

   (2.5) 
 

   (2.6) 
 

Using the same equation (2.2) above, we can establish that  is an increasing function in  for 

 and it is a decreasing function in  for . 

When , the corresponding hazard rate  at the origin of the multivariate function behaves quite 

differently than it does for the Weibull or gamma distributions; for both these families, the distribution can be an exponential 

distribution, or  or , so that  is discontinuous in the shape parameter. This is 

not the case with the multivariate family having hazard rates as stated in equation (2.2). Therefore, the multivariate family may be 

useful to make multivariate function  easier to understand. However, in spite of what are already stated in both 

equations (2.3) as well as (2.4) above, it needs not be that multivariable function  and its corresponding 

multivariate survival function  are at all similar to each other. 

 

3. A new family of two-parameter multivariate Exponential distributions 

Given the multivariate function , the two-parameter family of multivariate survival 

function: 
 

    (3.1) 

 

can be derived from equation (1.1). the multivariate exponential distribution can be obtained as a special case of (3.1) when 

. When , this multivariate distribution is the conditional multivariate distribution, given , of a 

random variable z with the multivariate logistic survival function: 
 

       (3.2) 

 

Regarding equation (3.1) above as a special case of equations (2.1) and (2.2), it can be seen that the multivariate survival function 
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 has the multivariate density function  which can be defined as: 

 

 
 

and the corresponding hazard rate of this multivariate density function is as given: 

 

 
 

At this point, it should be noted that  that is  is decreasing function in 

. Similarly,  is an increasing function in  

 

Considering equations (2.3) and (2.4), it can be seen that 

 

     (3.3) 

     (3.4) 

   (3.5) 

  (3.6) 

 

As in bivariate case, in multivariate also, it is true that distribution with an increasing hazard rate is new and better than used. 

Similarly, distribution with a decreasing hazard rate is new and worse than used. This fact was earlier presented by Barlow and 

Proschan [4]. From the above fact, it follows that when multivariate random variables  have the multivariate 

distribution , the conditional multivariate survival function satisfies: 

 

 
 

Proposition: The multivariate function  is convex for  and concave for . 

 

The above result can be shown by differentiating the multivariate  n-times with respect to all variables 

. This means that for , the multivariate function  is a decreasing function. On the other hand, 

for ,  in unimodal, with the mode of each of the n-variables given as: 

 

 
 

Considering equations (3.5) and (3.6), it can be shown that the multivariate function  has finite moments of all 

positive orders. By computing directly, it can be verified that if these n-variables have distribution function 

, then each of the n-variables has first moment given as: 

 

           (3.7) 

 

The above expectations are always positive quantities. In particular, for the marginal distribution of random variable , we have: 

 

       (3.8) 

 

which when r=1 is substituted in it, gives equation (3.7). Similarly, for the marginal distribution of random variable , the ith 

moment is also given as in equation (3.8) above  replacing 

. The Laplace transform of marginal distribution 
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 of each of the n-random variables  can also be obtained as follows.  

 

For random variable , it is given as: 

 

          (3.9) 

 

Similarly, that of random variable  can be obtained in the same way as above by replacing  with . The same pattern is 

applied to all remaining-2 random variables. 

 

Equations (3.8) and (3.9) can be expressed as infinite series as far as . Based on this, the integrands of (3.8) and (3.9) 

can be expanded in a power series and the result be integrated term by term to generate the following for the random variable : 

 

 ( ) 

 

and also 

 

   (3.10) 

 

Similarly, that of marginal distribution of random variable  can also be obtained in the same way by using the corresponding 

moments and Laplace transform of the random variable . All others follow in the same way. 

 

As a consequence of the above proposition as well as what was earlier presented by Karlin, S.; Proschan, F. and Barlow, R. E. [11], 

the total positivities properties yield moment inequalities that are not generally true. In particular, the coefficient of variation  is 

less than 1 for  and is greater than 1 when ,  is the variance and  is the first moment of random variables 

. It is also clear that the kth quartile  of  can be obtained by the relation:  

Also, the median of each of the random variables  is given by the formula: 

Median of   

From the above relations, it can be observed that median, mode and expectations of random variables  are all 

increasing functions in α and decreasing function in the scale parameter β. 

Considering the monotonic nature of log  and the values of random variables  are all positive, it 

can be shown that: . It should also be noted that 

. If all  are fixed constants, say equal 1, then 

the weak limit of , as α tends to infinity, is degenerate at point 1, while the limit is degenerate at point zero when α tends to zero. 

It also worth noting that  is bounded and continuous in the parameters just like 

gamma distribution and unlike Weibull distribution. 

 

4. Extended multivariate Weibull distributions 

Consider the multivariate Weibull survival function: 

 

        (4.1) 

 

Then using equations (1.1) and (4.1) above, we can get the new three-parameter survival function 

         (4.2) 

 

This geometric extreme stable extension of the multivariate Weibull distribution may sometimes be a competitor to the more usual 
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three-parameter Weibull distribution with survival function: 

 

 
 

If  have a multivariate exponential distribution with parameter β=1, then  have the survival function 

as given in equation (4.1) above. Similarly, if  have the survival function (3.1) with parameter β=1, then 

 have the survival function as stated in (4.2). Therefore, moments of survival function given in (4.2) can be obtained 

from non-integer moment function of equation (3.1). Hence, from equation (3.6), it can be seen that whenever the random 

variables  have a multivariate survival function as in equation (4.2), then: 

 

       (4.3) 

 

If , then the moments can be obtained from the equation (3.4) by applying change of variables technique that was 

earlier applied in deriving equation (4.3). However, those moments cannot be stated in closed form; therefore, even the first 

moments of equation (4.2) must be obtained numerically. By expressing the moments as: 

 

 
 

It can be shown that: 

 
 

Of course, these are random variables that are degenerate at point . 

It should be noted that the density and hazard rate of the distribution given by the equation (4.2), can b obtained from equations 

(2.1) and (2.2). The hazard rate, particularly, is given by: 

 

 
 

In this function, it can be verified, by applying calculus, that its hazard rate is increasing if  and decreasing if 

. If , then the hazard rate is initially increasing and eventually increasing, but there may be one interval where 

it is decreasing. On the other hand, if , then the hazard rate is initially decreasing and eventually decreasing, but there may 

be one interval where it is increasing. The slope changes at those intervals are subtle and hence graphical method can be applied in 

this case. 

 

5. Geometric-extreme stability of multivariate distribution 

Let be the sequences of independent identically distributed 

random multivariate random vectors with distributions as stated in the family (1.1), and if N has a geometric distribution on 

{1,2,3,...}, then minimum and maximum of all  also have distributions in the family. To see why this property may 

be of interest, recall that the extreme value distributions for extrema, and as such they are sometimes useful approximation. In 

practice, a random vector of interest may be the extreme of only a finite, possibly random number N of random number N of 

random vectors. When it has a geometric distribution, the random vector has a particularly important stability property, just like 

that of extreme value distributions. 

Assume that N is independent of  with a geometric (p) distribution, that is: 

 

 

and let  (5.1) 



National Journal of Advanced Research 

36 

 
 

5.1 Definition: If  implies that the distribution of  are in , then  Is said to be geometric minimum 

stable (geometric maximum stable). If  is both geometric-minimum and geometric-maximum stable, then  is said to be 

geometric-extreme stable. 

 

The term ‘geometric-maximum stable’ was discussed by Marshal et al. [14] and Rachev et al. [15] to describe a related but more 

restricted concept. They apply the term not to families of distribution but to individual distribution; in their submission, a 

distribution is geometric-maximum stable if the location-scale parameter family generated by the distribution is geometric-

maximum stable in our sense. The two ideas essentially coincide for families  that are parameterized by location and scale. Most 

of the families considered in the paper are not of that form, a notable exception being the logistic distribution. For instance, the 

family of logistic distributions and multivariate survival function of the form: 

 

 
 

is a geometric-extreme family, indeed distribution in this family are geometric-stable even in the sense of Rachev et al. [15]. The 

fact that this family is geometric-minimum stable was utilized by Arnold [3] to construct a stationary process with logistic 

distributions, with multivariate survival function of the form: 

 

 
 

 
 

      (5.2) 

 

As an extension of univariate and bivariate parametric family of distributions given by Marshal et al. [14], the multivariate 

parametric family of distributions stated in equation (5.2), is also geometric-minimum stable. 

 

Similarly, for random variables  also given in equation (5.1) by using arguments similar to those used above, 

we can see that: 

 

 

 

      (5.3) 

 

According to Marshal et al. [14], the multivariate parametric family, given in equation (5.3) above is geometric-maximum stable. 

The multivariate families defined in equations (5.2) and (5.3) above combine together to give single parametric family 

 where  is given in equation (1.1), with condition 

that in equation (5.2),  and in equation (5.3), with . At this point, it can be seen that 

, hence , furthermore, it also worth noting that  is 

stochastically increasing function in . 

 

Proposition: The parametric family  of distributions of the form (1.1) is geometric maximum stable. 

Proof: To verify this proposition, it is enough to verify closure of  under a kind of composition, as follows. Suppose that 

, where  is as stated in equation (5.3). Therefore, 
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This shows that , and consequently,  has both geometric-maximum and geometric-minimum stability. 

The proof of the above proposition also shows that if F is replaced by any other distribution in . Then that distribution will also 

generate . 

Below are some properties of geometric-extreme stable families that worth noting. The same properties also hold for geometric-

minimum and geometric-maximum stable families. 

a. If P1 and P2 are geometric-extreme stable families, then  are also geometric-extreme stable families; the 

empty set is vacuously such a family. 

b. For every distribution F that determines a geometric-extreme stable family P(F), if . Therefore, 

the minimal geometric stable families form a partition of the set of all distributions into a set of equivalence classes. In this 

case, a minimal geometric-extreme stable family is a family which is non-empty and has no non-empty geometric-extreme 

stable sub-family. 

c. If F and G differ only by a scale (location) parameter, then P(F) can be derived from P(F) by a common scale (location) 

parameter change. 

d. Assume that , this means that , and also  is given by the formulae: 

 

 
 

If F is geometric-extreme stable, then  is also geometric-extreme stable. 

(a) Let F be a family of distribution functions, and also suppose that: 

 

 
 

If P is geometric-extreme stable, then  is geometric stable for all  and all real  

 

6. Application of Geometric Distribution in extreme stability property 

The geometric-extreme stability property of  is indeed important, and it largely depends upon the fact that a geometric 

sum of independent identically distributed random variables has a geometric distribution. This partially explains why random-

minimum stability cannot be expected if the geometric distribution is replaced by some other distribution on {1,2,…}. Therefore, if 

the above fact is repeated with the assumption that N-1 has a Poisson distribution, and then  would be replaced by a family that 

would not be Poisson-extreme stable. 

 

If F is a distribution function and  has the stability property then the 

discrete distribution must satisfy the functional equation:  

 

 
 

The only solution to this equation is the geometric distribution when some regularity conditions are applied. 

 

7. Conclusion 

The general method of introducing one-parameter into a family of multivariate distribution is developed and presented. The 

extended exponential distribution provide a new method of adding two-parameter to a family of multivariate distribution which 

may sometimes compete with multivariate Weibull and gamma families of distributions. New method for derivation of three-

parameter type of Weibull family of distribution is introduced and discussed. It is also presented in this paper that all the methods 

of adding parameter to different families of different distributions commonly possessed stability properties. 
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